

Goals to Reality

Recent Successes

X-40A – Reusable Space Plane Demonstrator

AAW – Active Aeroelastic Wing

X-31 Vector – Extremely
Short Takeoff and Landing
Demonstrator

Bird of Prey – Stealth Technology Demonstrator

X-45A UCAV – Unmanned Combat Air Vehicle

X-50A Dragonfly – Rotorcraft to Fixed Wing Aircraft Demonstrator

Demonstrated...

Rapid Prototyping

Technology Risk Reduction

Operational Capability

Government/Industry Cooperation

Affordability

Tangible Results

Innovative Vehicle Concepts

Respond to Emerging Mission Needs

Subsonic Air Vehicle Technology Needs

	Subsonic Air Vehicle Categories			
Technology	3			-
Multidisciplinary tools and process for air vehicle optimization	1	√	√	✓
Probabilistic structural analysis and design	√	√	√	√
Advanced low cost structures	√	√	√	√
Laminar flow control (active and passive)	√			√
Flow control (active and passive)	√	√	√	√
Propulsion performance (SFC and thrust / weight)	√	√	√	√
Emissions	√		√	
Low noise	√		√	
Reliability and safety	√	√	√	√
Pilot / vehicle interface	√	√	1	√
Automation / autonomy	√	√	√	√
Controlled airspace integration	√	1	√	100

Multiple-use technologies promote affordability of subsonic air vehicle development

Supersonic Requirements

Military Unique

Common Requirements

Commercial Unique

- Survivability
- High payload fraction
- Varied flight regimes
- Common logistics

- Long range
- Efficient propulsion
- Low cost
- Improved aerodynamics
- Acoustics / noise

- Passenger accommodation
- Environmental impact
- FAA compliance
- Sonic boom reduction
- Cost of operations

High Payoff Technologies

Low-boom multidisciplinary design optimization

Laminar flow control

Partnership for rapidly turning Goals into Reality

